Smart Contract Audit Report

for

Kepler

t

TRUSTLOOK

Version 0.1
Trustlook Blockchain Labs

Email: bd@trustlook.com



® TRUSTLOOK

Project Overview

Project Name Kepler
Contract codebase N/A
Platform Avalanche/BSC/Ethereum/Polygon
Language Solidity
Submission Time 2022.04.06

Report Overview

Report ID TBL_20220406_00
Version 1.0
Reviewer Trustlook Blockchain Labs
Starting Time 2022.04.06
Finished Time 2022.04.18

@ Copyright 2022 Trustlook - All rights reserved



® TRUSTLOOK

Disclaimer

Trustlook audit reports do not provide any warranties or guarantees on the
vulnerability-free nature of the given smart contracts, nor do they provide any indication
of legal compliance. The Trustlook audit process is aiming to reduce the high level risks
possibly implemented in the smart contracts before the issuance of audit reports.
Trustlook audit reports can be used to improve the code quality of smart contracts and
are not able to detect any security issues of smart contracts that will occur in the future.
Trustlook audit reports should not be considered as financial investment advice.

@ Copyright 2022 Trustlook - All rights reserved



® TRUSTLOOK

About Trustlook Blockchain Labs

Trustlook Blockchain Labs is a leading blockchain security team with a goal of security
and vulnerability research on current blockchain ecosystems by offering
industry-leading smart contracts auditing services. Please contact us for more
information at (https:/www.trustlook.com/services/smart.html) or Email
(bd@trustlook.com)

The Trustlook blockchain laboratory has established a complete system test
environment and methods.

Black-box Testing The tester has no knowledge of the system being
attacked. The goal is to simulate an external hacking or
cyber warfare attack.

White-box Testing Based on the level of the source code, test the control
flow, data flow, nodes, SDK etc. Try to find out the
vulnerabilities and bugs.

Gray-box Testing Use Trustlook customized script tools to do the security
testing of code modules, search for the defects if any
due to improper structure or improper usage of
applications.

@ Copyright 2022 Trustlook - All rights reserved


https://www.trustlook.com/services/smart.html
mailto:bd@trustlook.com

® TRUSTLOOK

Introduction

By reviewing the implementation of Kepler’s smart contracts, this audit report has been
prepared to discover potential issues and vulnerabilities of their source code. We outline
in the report about our approach to evaluate the potential security risks. Advice to
further improve the quality of security or performance is also given in the report.

About Kepler

Kepler’s long-term vision includes: bringing more players into the NFTs game world,
returning to the fun of the game itself, and influencing more game content creators.
Facing the unknown future, Kepler is not limited to the RPG game itself, we believe the
world of Kepler has thousands of possibilities.

Kepler is a 3D Sci-Fi MMORPG based on multiple public chains, combining real-time
PVE/PVP combat, player socialization, simulation, and so on.

Each asset in the Kepler game world is a separate NFT, and players can earn and hold
their assets in the game world. These assets can be freely traded through the Kepler
Market, Opensea, or other marketplaces.

In the game, players take on the role of a member of the interstellar migrant fleet,
carving out a world of their own by exploring the planet Kepler and interacting with other
players.

@ Copyright 2022 Trustlook - All rights reserved



® TRUSTLOOK

About Methodology

To evaluate the potential vulnerabilities or issues, we go through a checklist of
well-known smart contracts related security issues using automatic verification tools and
manual review. To discover potential logic weaknesses or project specific
implementations, we thoroughly discussed with the team to understand the business
model and reduce the risk of unknown vulnerabilities. For any discovered issue, we
might test it on our private network to reproduce the issue to prove our findings.

The checklist of items is shown in the following table:

Category Type ID | Name Description
Coding Specification CS-01 ERC Standards The contract is using ERC standards.
CS-02 Compiler Version The compiler version should be specified.
CS-03 Constructor The constructor syntax is changed with Solidity versions. Need
Mismatch extra attention to make the constructor function right.

CS-04 Return standard Following the ERC20 specification, the transfer and approve
functions should return a bool value, and a return value code
needs to be added.

CS-05 Address(0) It is recommended to add the verification of

Validation require(_to!=address(0)) to effectively avoid unnecessary loss
caused by user misuse or unknown errors.

CS-06 Unused Unused variables should be removed.

CS-07 Untrusted Libraries | The contract should avoid using untrusted libraries, or the
libraries need to be thoroughly audited too.

CS-08 Event Standard Define and use Event appropriately

CS-09 Safe Transfer Using safeTransfer/transfer to send funds instead of send.

CS-10 Gas Consumption Optimize the code for better gas consumption.

CS-11 Deprecated Uses Avoid using deprecated functions.

CS-12 Sanity Checks Sanity checks when setting key parameters in the system

CS-13 Typo Typo in comments or code

CS-14 Fallback Function Splitting fallback and receive function

CS-15 Comment Standard | Use clear consistent comments with code semantics

@ Copyright 2022 Trustlook -

All rights reserved




® TRUSTLOOK

CS-16 Log Function Log functions should be removed in production code
CS-17 Duplication Duplicated function, variable, structure.
Coding Security SE-01 Integer overflows Integer overflow or underflow issues.

SE-02 Reentrancy Avoid using calls to trade in smart contracts to avoid reentrancy
vulnerability.

SE-03 Transaction Avoid transaction ordering dependence vulnerability.

Ordering
Dependence

SE-04 Tx.origin usage Avoid using tx.origin for authentication.

SE-05 Fake recharge The judgment of the balance and the transfer amount needs to
use the “require function”.

SE-06 Replay If the contract involves the demands for entrusted management,
attention should be paid to the non-reusability of verification to avoid
replay attacks.

SE-07 External call For external contracts, pull instead of push is preferred.

checks

SE-08 Weak random The method of generating random numbers on smart contracts
requires more considerations.

Additional Security AS-01 Access control Well defined access control for functions.

AS-02 Authentication The authentication management is well defined.

management

AS-03 Semantic Semantics are consistent.

Consistency
AS-04 Functionality The functionality is well implemented.
checks

AS-05 Business logic The business model logic is implemented correctly.

review

AS-06 Unrestricted User should be aware of unrestricted function

Function

@ Copyright 2022 Trustlook - All rights reserved




® TRUSTLOOK

The severity level of the issues are described in the following table:

Severity Description

Critical The issue will result in asset loss or data manipulations.

High The issue will seriously affect the correctness of the
business model.

Medium The issue is still important to fix but not practical to
exploit.

Low The issue is mostly related to outedate, unused code

shippets.

Informational

This issue is mostly related to code style, informational
statements and is not mandatory to be fixed.

@ Copyright 2022 Trustlook - All rights reserved




® TRUSTLOOK

Audit Results

Here are the audit results of the smart contracts.

Scope

Following files have been scanned by our internal audit tool and manually reviewed and tested
by our team:

File names Sha1
nft/NFTMarket.sol 49785d77ae4fcObaefd2df40a4b042e87b0925a3
nft/KeplerNFT.sol da1f7f36bc6be8209bf8b005adbeab5ffaad984b5
nft/MysteryBox.sol 4aedc692fe5fd7769d419a9f69f388208d379a2¢
nft/NFT.sol 487e37c333e239871fc03b635e72f899d1c704f8
nft/interfaces/IKeplerNFT.sol 3f8f02ba7264aa76ee8dae3edf02aaa426630adb
nft/interfaces/INFTMarket.sol ¢369e3203da24ecaa9ec4d846cf06fe10d2aade3
nft/interfaces/IMysteryBox.sol 396e01¢c16a520061f1a24fefo96e0d837df5a63ff
bridge/Bridge.sol cc1d57958f224a41b8901a8fec836b326733766
bridge/interfaces/IBridge.sol f5b8556753383534895d4b5af82da85fcalc8e2d
oracle/Oracle.sol 80d2b3a5c8c77addd7000edb0e060ef245c96725
oracle/interfaces/IOracle.sol 78b32ce9a1e77e608f20c535526e8c4aceae9cel
libraries/SafeDecimalMath.sol 261¢c1e3c0316a919bdc3bcdb56199a8d71627959
libraries/Signature.sol 5c7a06392781a3283e7ccc17a17365f0709f145
common/Minable.sol 0b75ae7913fd0e839c2540554 1d636ee00a5d4e6
pool/RewardPool.sol 8df261db8ce4fobbd45a4cbe121bb2b88d73150e
pool/DepositPool.sol b8e813696ab67bd75eb89e9c68bf0662dc3e1ead
pool/CorePool.sol fcc336f317bccbbbe15adf3caabbec611903035b
pool/PoolFactory.sol 4f4284b8b781fbd66474dac93d76d53a1d38c527
pool/BasePool.sol 1de0a242380b32962d80c59b3a910cda11a82b34
pool/interfaces/ICorePool.sol 5ac0d444b7e5883178c95f26¢c7fdfbb770ab4fe8
pool/interfaces/IRewardPool.sol  |1297d51b301013ebcad14587dd9e2c163c1a0bc5
pool/interfaces/IPoolFactory.sol 9f8efe899fee9e3308759ee263e0d276cad6d595
tokens/Token.sol 11618d310a2f5f3d117908c912d4daa579e73f80
tokens/interfaces/IToken.sol 765cb4b01d6f8af5baf176776229c0f0cff6e675

@ Copyright 2022 Trustlook - All rights reserved



® TRUSTLOOK

Summary
Issue ID Severity | Location Type ID | Status
TBL_SCA_001 Info Oracle.sol:26 AS-06 Closed
TBL_SCA 002 | Low Oracle.sol:29 CS-12 Fixed
TBL_SCA_003 | Info BasePool.sol CS-06 Fixed
TBL_SCA_004 | Info BasePool.sol:10 CS-17 Fixed
TBL_SCA_005 | Low PoolFactory.sol:73 CS-12 Fixed
TBL_SCA_006 | Info CorePool.sol:4 CS-16 Fixed
TBL_SCA_007 | Info CorePool.sol:29 CS-13 Fixed
TBL_SCA_008 | Medium CorePool.sol:129 AS-05 Closed
TBL_SCA_009 | Medium CorePool.sol:239 AS-05 Fixed
TBL_SCA_010 | Info Token.sol:22 AS-06 Closed
TBL_SCA_011 Info MysteryBox.s0l:58,65,69 CS-08, Fixed
Cs-12
TBL_SCA_012 | Info MysteryBox.sol:177 Cs-10 Fixed
TBL_SCA_013 | Medium MysteryBox.sol:324 AS-05 Fixed
TBL_SCA_014 | Info NFTMarket.sol:3 CS-06 Fixed
TBL_SCA_015 | Info NFTMarket.sol:86 CS-05 Fixed
TBL_SCA_016 | Medium NFTMarket.sol:235 AS-05 Fixed
TBL_SCA 017 | Info Bridge.sol: 35, 395, 419 CS-05 Fixed
TBL_SCA_018 | Info RewardPool.sol: 48, 49 CSs-12 Fixed
TBL_SCA 019 | Medium RewardPool.sol:63 AS-05 Fixed

@ Copyright 2022 Trustlook - All rights reserved




® TRUSTLOOK

Details

«|D: TBL_SCA_001

* Severity: Info

* Location: Oracle.sol:26

Type: AS-06 (Unrestricted Function)
» Description:

The asset prices can be updated with no restrictions. Users should be aware of this risk.

* Remediation:

The Kepler team is aware of this and will update the Oracle.

@ Copyright 2022 Trustlook - All rights reserved



® TRUSTLOOK

«|D: TBL_SCA_002
* Severity: Low
* Location: Oracle.sol:29
Type: CS-12 (Sanity Checks)
 Description:
It is recommended to check length for both assets and prices.
* Remediation:

This issue has been fixed in a new release.

@ Copyright 2022 Trustlook - All rights reserved



® TRUSTLOOK

+|D: TBL_SCA_003
* Severity: Info
* Location: BasePool.sol
Type: CS-06 (Unused)
 Description:
The code is not used. It is recommended to remove the unused code.
* Remediation:

This issue has been fixed in a new release.

@ Copyright 2022 Trustlook - All rights reserved



® TRUSTLOOK

+ID: TBL_SCA_004

* Severity: Info

* Location: BasePool.sol:10
Type: CS-17 (Duplication)
 Description:

Stakingltem and UserStakingltem are duplicated.

* Remediation:

This issue has been fixed in a new release.

@ Copyright 2022 Trustlook - All rights reserved



® TRUSTLOOK

+|D: TBL_SCA_005
* Severity: Low
* Location: PoolFactory.sol:73
Type: CS-12 (Sanity Checks)
 Description:
It is recommended to check length for both pools and weights.
* Remediation:

This issue has been fixed in a new release.

@ Copyright 2022 Trustlook - All rights reserved



® TRUSTLOOK

+ID: TBL_SCA_006
* Severity: Info
* Location: CorePool.sol:4
Type: CS-16 (Log Function)
 Description:
It is recommended to remove console.log functions in production code.
* Remediation:

This issue has been fixed in a new release.

@ Copyright 2022 Trustlook - All rights reserved



® TRUSTLOOK

+ID: TBL_SCA_007
* Severity: Info
* Location: CorePool.sol:29
Type: CS-13 (Typo)
 Description:
Variable depoistAmount is a typo, should be depositAmount. Please note that another
variable also named depositAmount is used at line 233.
* Remediation:

This issue has been fixed in a new release.

@ Copyright 2022 Trustlook - All rights reserved



® TRUSTLOOK

+ID: TBL_SCA_008

* Severity: Medium

* Location: CorePool.sol:129
Type: AS-05 (Business Logic)
 Description:

If function updateLockUnitMultiplier is called and extraWeightedAmount is updated using
the new lockUnitMultiplier, then each deposit in _userDeposits should also update the
deposit.extraWeightedAmount.

* Remediation:
The Kepler team explained that once a user has staked, the

userDeposit.extraWeightedAmount will never be changed. Function updateLockUnitMultiplier
only affects future deposits.

@ Copyright 2022 Trustlook - All rights reserved



® TRUSTLOOK

+ ID: TBL_SCA_009
* Severity: Medium
* Location: CorePool.sol:239
Type: AS-05 (Business Logic)
 Description:
extraWeightedAmount -= extraWeightedAmount;
should be updated to
extraWeightedAmount -= deposit.extraWeightedAmount;

* Remediation:

This issue has been fixed in a new release.

@ Copyright 2022 Trustlook - All rights reserved



® TRUSTLOOK

+ID: TBL_SCA_010

* Severity: Info

* Location: Token.sol:22

Type: AS-06 (Unrestricted Function)
 Description:

Owner can mint tokens to any address. Users should be aware of this risk.

* Remediation:

The Kepler team will introduce multisig from Gnosis to help alleviating the risk.

@ Copyright 2022 Trustlook - All rights reserved



® TRUSTLOOK

*|D: TBL_SCA_011
* Severity: Info
* Location: MysteryBox.sol: 58, 65, 69
Type: CS-08 (Event Standard), CS-12 (Sanity Checks)
 Description:
It is recommended to do sanity checks and emit events when updating system
configurations.
* Remediation:

This issue has been fixed in a new release.

@ Copyright 2022 Trustlook - All rights reserved



® TRUSTLOOK

|D: TBL_SCA 012

* Severity: Info

* Location: MysteryBox.sol: 177
Type: CS-10 (Gas COnsumption)
 Description:

Ths if statement can be simplified as below:

if (price >= paymentConfig.maxPrice - paymentConfig.priceStep) {

result = paymentConfig.maxPrice;

}

* Remediation:

This issue has been fixed in a new release.

@ Copyright 2022 Trustlook - All rights reserved



® TRUSTLOOK

+ID: TBL_SCA 013

* Severity: Medium

* Location: MysteryBox.sol:324

Type: AS-05 (Business Logic)

 Description:
uint256 femaleCount = _genderTokenlds[MALE].length();
should be updated to
uint256 femaleCount = _genderTokenlds[FEMALE].length();

* Remediation:

This issue has been fixed in a new release.

@ Copyright 2022 Trustlook - All rights reserved



® TRUSTLOOK

+ID: TBL_SCA 014
* Severity: Info
* Location: NFTMarket.sol:3
Type: CS-06 (Unused)
» Description:
It is recommended to remove unused imports.
* Remediation:

This issue has been fixed in a new release.

@ Copyright 2022 Trustlook - All rights reserved



® TRUSTLOOK

+ |D: TBL_SCA-015

* Severity: Info

* Location: NFTMarket.sol: 86
Type: CS-05 (Address Validation)

 Description:

It is recommended to validate that the address is not O.
* Remediation:

This issue has been fixed in a new release.

@ Copyright 2022 Trustlook - All rights reserved



® TRUSTLOOK

+|D: TBL_SCA-016

* Severity: Medium

* Location: NFTMarket.sol: 235
Type: AS-05 (Business Logic)

 Description:

STATUS_OPEN should be status.
* Remediation:

This issue has been fixed in a new release.

@ Copyright 2022 Trustlook - All rights reserved



® TRUSTLOOK

+ |D: TBL_SCA-017

* Severity: Info

* Location: Bridge.sol: 35, 395, 419
Type: CS-05 (Address Validation)

 Description:

It is recommended to validate that the address is not O.
* Remediation:

This issue has been fixed in a new release.

@ Copyright 2022 Trustlook - All rights reserved



® TRUSTLOOK

+|D: TBL_SCA-018

* Severity: Info

* Location: RewardPool.sol: 48, 49
Type: CS-12 (Sanity Checks)

 Description:

It is recommended to validate that the parameter is not 0.
* Remediation:

This issue has been fixed in a new release.

@ Copyright 2022 Trustlook - All rights reserved



® TRUSTLOOK

«ID: TBL_SCA-019
* Severity: Medium
* Location: RewardPool.sol: 63
Type: AS-05 (Business Logic)
 Description:
The _withdraw() function lets a user withdraw his locked rewards. To get the full amount,
a user has to withdraw 12 times with withdrawinterval between the withdrawals.

However, there are two issues in the current implementation. First, a user cannot wait 12
* withdrawlinterval and do one withdrawal with the full amount.

Second, after the first _withdraw(), the lockedReward.withdrawCountis 1. To do a
second _ withdraw(), maxWithdrawCount needs to be at least 2, which means 2 *
withdrawlnterval of wait time. After the second _withdraw(), lockedReward.withdrawCount is 2.
To do a third _withdraw(), maxWithdrawCount needs to be at least 3, which means 3 *
withdrawlnterval of wait time. This goes on until the last _withdraw(). To fix this problem,
developer can remove

lockedReward.lastWithdrawTime=block.timestamp;
Or change

maxWithdrawCount > lockedReward.withdrawCount,
To

maxWithdrawCount >= 1

* Remediation:

This issue has been fixed in a new release.

@ Copyright 2022 Trustlook - All rights reserved



